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Background and objective: Both mass detection and segmentation in digital mammograms play a cru- 

cial role in early breast cancer detection and treatment. Furthermore, clinical experience has shown that 

they are the upstream tasks of pathological classification of breast lesions. Recent advancements in deep 

learning have made the analyses faster and more accurate. This study aims to develop a deep learning 

model architecture for breast cancer mass detection and segmentation using the mammography. 

Methods: In this work we proposed a double shot model for mass detection and segmentation simultane- 

ously using a combination of YOLO (You Only Look Once) and LOGO (Local-Global) architectures. Firstly, 

we adopted YoloV5L6, the state-of-the-art object detection model, to position and crop the breast mass 

in mammograms with a high resolution; Secondly, to balance training efficiency and segmentation per- 

formance, we modified the LOGO training strategy to train the whole images and cropped images on the 

global and local transformer branches separately. The two branches were then merged to form the final 

segmentation decision. 

Results: The proposed YOLO-LOGO model was tested on two independent mammography datasets (CBIS- 

DDSM and INBreast). The proposed model performs significantly better than previous works. It achieves 

true positive rate 95.7% and mean average precision 65.0% for mass detection on CBIS-DDSM dataset. Its 

performance for mass segmentation on CBIS-DDSM dataset is F1-score = 74.5% and IoU = 64.0%. The similar 

performance trend is observed in another independent dataset INBreast as well. 

Conclusions: The proposed model has a higher efficiency and better performance, reduces computational 

requirements, and improves the versatility and accuracy of computer-aided breast cancer diagnosis. Hence 

it has the potential to enable more assistance for doctors in early breast cancer detection and treatment, 

thereby reducing mortality. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Breast cancer is the most frequently diagnosed cancer and one 

f the leading common cancer-caused death for females [ 1 , 2 ]). One

f the most commonly used early breast cancer screen methods 

s mammography [3] . Currently, the interpretation of mammogra- 

hy is still done manually by experienced radiologists. When the 

ensity of breast tissue is too high or the lesion is too small, it 

s easy to have a false negative observation [4] . Therefore, provid- 

ng the radiologist with powerful computer-aided diagnosis (CAD) 
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ools is one approach to improve mammographic interpretation 

nd decision-making especially when the lesions are easy to be 

issed by manual detection [5] . Specifically, an automatic, accu- 

ate and efficient mass detection and segmentation model could 

e helpful for both manual diagnosis and automatic masses classi- 

cation of breast cancer. 

With the advancement of recent developments in deep learn- 

ng, more and more new generation CAD models are constantly 

eing created to explain mammography. In the past a few years, 

ost deep learning- based image segmentation models use deep 

onvolutional neural networks (CNNs) based U-Net (Olaf [6] ) ar- 

hitecture to achieve their best performance, such as U-Net ++ [7] , 

ttention U-Net [8] , DenseUNet [9] , R2U-Net [10] , UNet 3 + [11] ,

onnected-Unet [12] and others [ 13–15 ]. CNNs could automatically 

enerate important features from data in different domains with 
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.106903&domain=pdf
mailto:pingzhao.hu@umanitoba.ca
https://doi.org/10.1016/j.cmpb.2022.106903


Y. Su, Q. Liu, W. Xie et al. Computer Methods and Programs in Biomedicine 221 (2022) 106903 

d

u

f

G

t

i

e

p

t

s

p

C

r

(

t

c

w  

T

m

m

n

a

o

t

fi

t

p

f

m

m

s

o

a

l

f

i

t

m

p

s

t

d

m

h  

t

i

r

i

t

d

m

e

d

L  

i

(

(

2

2

o  

w

m

o

s

T

i

t

t

I

c

o

t

2

s

i

m

C

o

f

r

r

e

a

p

i

o

c

i

f

o

t

c

m

f

w

h

t

s

t

b

p

i

t

s

c

a

w

n

s

a

o

s

L

ifferent abstract levels. This advantage makes it the most pop- 

lar technique in deep learning-based computer vision research 

or the past few years. Currently, some of the high configuration 

PUs are designed for the convolution calculation, which makes 

he CNNs faster and eventually allows CNN to continuously flourish 

n the field of computer vision. However, according to Valanarasu 

t al. [16] , one major limitation of these CNN models is that they 

ay too much attention to local square of pixels. As a matter of 

he fact, a newly emerged deep learning architecture, named Vi- 

ion Transformer (ViT), has recently been leading its trend for re- 

lacing CNNs in computer vision [17] . Comparing with traditional 

NNs, ViT is powerful to capture both local and global or long- 

ange visual dependencies through its self-attention mechanisms 

either course-gained global attention or fine-grained local atten- 

ion). Furthermore, the attention mechanism of the ViT could in- 

rease its interpretability, thus reducing the fear of “Black-box”

hen applying it in critical areas such as healthcare field [ 18 , 19 ].

hese advantages of ViT make it a good fit to solve the mam- 

ography segmentation problem. The main challenge of ViT-based 

edical image segmentation model is that training such a model 

eeds strong computing power [20] . Due to the limitations of GPU 

nd other hardware conditions, current computing resources might 

nly segment low-resolution images. Therefore, to some extent, 

his reminds us to develop a more accurate and computing ef- 

cient automatic segmentation system. Recently, there are works 

hat combined the advantages of both the ViT and CNNs. For exam- 

le, CvT introduced convolutions into ViT to achieve improved per- 

ormance and efficiency, but it was not designed for solving seg- 

entation problem [21] . TransUNet is the first transformer-based 

edical image segmentation framework that outperformed other 

tate-of-the-art segmentation models [22] . It is also a combination 

f CNNs and ViT. Medical Transformer (MedT) proposed a gated 

xial transformer model structure which consists of convolutional 

ayers and gated axial-attention layers [16] . The gated axial trans- 

ormer blocks are then equipped with a LOGO (Local-Global) train- 

ng strategy, which could fully utilize the medical image data to 

ackle with the small sample size issue [16] . 

Breast lumps usually only appear in a small area on a mam- 

ogram, which is called region of interesting (ROI). Yan et al. pro- 

osed that if the ROI could be detected first, it will benefit the 

egmentation task later [23] . They thus used a YoloV3 [24] as de- 

ector to identify the ROI from the mammograms, then passed the 

etected ROI into a CNN called V19U-net ++ [7] for further seg- 

entation. However, the ROI detection model YoloV3 they used 

as been updated to YoloV5L6 [ 25 , 26 ] now. They also made YoloV3

o detect only one breast mass ROI per image. However, in practice, 

t is possible to have more than one mass in a breast mammog- 

aphy image. Furthermore, their segmentation model V19U-net ++ 

s a traditional CNN model, which could be improved by adapting 

ransformer into its architecture. 

Inspired by the MedT [16] and Jocher et al.’s two-stage 

etection-segmentation workflow, we proposed a novel breast 

ass segmentation model that first uses YoloV5 [25] and its lat- 

st model [26] to detect breast mass ROI in a mammogram, crop it 

irectly from the high-resolution image, and finally use an updated 

OGO training strategy [ 27 , 28 ] to segment mass from the cropped

mages. Our contributions are mainly in two aspects: 

1) We first tested the state-of-the-art object detection model, 

YoloV5, to detect breast mass in mammograms, and provided 

the specific cropped local images for later segmentation analy- 

sis. 

2) The advantage of ViT in considering long-range dependencies 

was fully utilized in our model. The LOGO structure of our 

model not only greatly improved the segmentation resolution 
2 
at the original pixel level, but also maintained the positional 

accuracy of the segmentation result in the original image. 

. Materials and methods 

.1. Mammogram data sets 

Two mammogram datasets, the Curated Breast Imaging Subset 

f DDSM (CBIS-DDSM) [ 29–31 ] and INBreast dataset [32] ( Table 1 ),

ere used to train and test our mass detection and segmentation 

odels. Each of the two datasets is composed of multiple pairs 

f scanned film mammography images ( Fig. 1 (a)) and their corre- 

ponding binary segmentation images of breast masses ( Fig. 1 (b) ). 

he CBIS-DDSM has its standardized training-testing split as shown 

n Table 1 . We used the training part of the CBIS-DDSM dataset as 

he training set in both of our mass detection and mass segmenta- 

ion, and half of the CBIS-DDSM’s test data is used for validation. 

n order to test the reliability and versatility of our model, we cal- 

ulated its performance on the INBreast dataset and the other half 

f CBIS-DDSM’s test data. It should be noted that each image in 

he two sources may have one or more than one breast mass. 

.2. Data pre-processing 

DICOM (Digital Imaging and Communications in Medicine) is a 

pecial medical image file format, containing much detailed clinical 

nformation. In order to allow the object detection model and seg- 

entation model to read the images directly, we converted the DI- 

OM format to PNG format. We also found additional signals in the 

riginal image, which are useful for human reading, but may inter- 

ere with computer processing, such as text marks in the upper 

ight corner of the original mammography images ( Fig. 1 (a) ). To 

emove such non-informative noise and keep the size and/or ori- 

ntation style consistent, we pre-processed all of our images using 

daptive denoising algorithm ( Fig. 1 ). We first did adaptive crop- 

ing, where we cropped 2.5% from the top and bottom of the orig- 

nal image. Then we binarized the images with a specific thresh- 

ld value, then generated an adaptive mask by selecting the largest 

onnected area in the binarized image using Python package scikit- 

mage [33] . Only pixels within this adaptive mask were retained for 

urther processing. Some images have the adaptive mask on the 

pposite side (i.e., the largest connected area could present on ei- 

her the left side or right side of the original image). To make this 

onsistent, we flipped some of the images to make the adaptive 

ask always on the left side, and once an image is flipped, this in- 

ormation will be recorded, its corresponding segmentation mask 

ill also be flipped. After flipping, the contrast limited adaptive 

istogram equalization (CLAHE) were used to improve image con- 

rast. CLAHE is a mature image processing algorithm and has been 

hown to have the ability to benefit the mammogram detection 

ask [34] . Finally, we scaled the processed image to the default size 

y adaptive padding. We made sure that the cropping, flipping, and 

adding were operated based on the image size. Since the sizes of 

mage and mask are the same in the input stage, we ensured that 

he adaptive operation did not damage the original labeled mass 

egmentation. Thus, our pre-processing algorithm guarantees the 

onsistency of the masks and mammography images before and 

fter the imaging processing. The whole processing is automatic, 

ith two specify hyperparameters to be set: the threshold of bi- 

ary the image and the ratio of imaging cropping. We did simple 

tatistics and found that the gap between the breast body bound- 

ry and the image boundary is less than 2.5% for more than 90% 

f our mammograms. Therefore, the ratio of imaging cropping was 

et to 2.5%. The pre-processed images are the input of the YOLO- 

OGO mass detection and segmentation model we proposed. 
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Table 1 

Summary of the two datasets used in the study. 

Dataset Number of images with mask Mammogram image Segmentation mask 

CBIS-DDSM [30] 1231(Training) + 361(Test) DICOM DICOM 

INBreast [32] 107 DICOM PNG 

Fig. 1. The automatic adaptive denoising image pre-processing workflow. (a) is the original DICOM image with extraneous information on its upper right corner, (b) is 

the original ground truth segmentation mask of the same size corresponding to (a). (c) and (d) are the jpeg format mammography image and the ground truth segmentation 

mask after pre-processing, which have the same size (the default size is 4096 × 4096). 
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.3. YOLO-LOGO model for breast mass detection and segmentation 

The overall architecture of the proposed YOLO-LOGO trans- 

ormer model for breast mass detection and segmentation in dig- 

tal mammograms is shown in Fig. 2 (a) . It includes two steps: 

irstly, we use YoloV5 to detect the breast mass ROI, and then crop 

t directly from the high-resolution image ( Fig. 2 (b) ); Secondly, 

o increase the training efficiency, we adopt an updated version 

f local-global (LOGO) segmentation strategy, which can greatly 

mprove the segmentation resolution at the original pixel level 

 Fig. 2 (a) ). 

.3.1. YOLO: architecture and methods of breast mass detection 

Unlike traditional multi-object detection tasks, our object is 

reast mass only (i.e., single class object detection). Thus, we do 

ot need to classify the detected objects. In our breast mass detec- 

ion stage, we adopted YoloV5L6, the state-of-the-art object detec- 

ion model in computer vision, as the detector ( Fig. 2 (b) ). YOLO

s a classic object detection model and YoloV5L6 is its 5th ver- 

ion. YoloV5L6 contains three main substructures in its architec- 

ure: backbone, neck, and prediction. Backbone is used to extract 

eatures from the input data. YoloV5L6 uses the Cross Stage Partial 

etworks (CSP) [35] as the backbone. The extracted image features 

ill then be passed to the model neck, which is used to gener- 

te features pyramids so that the model can detect the same ob- 

ect with different sizes and scales. YoloV5L6 uses Path Aggregation 

etwork (PANet) [36] as the model neck. Then the feature pyramid 

reated by PANet will be passed into the model head to generate 

he final output. 
3 
We used the enlarged bounding rectangles automatically ex- 

racted from the mask image as the ground truth ROI for YoloV5L6 

bject detection. Mathematically, these rectangles labels are stored 

s numeric values in the document. If there are n breast masses in 

he ground truth, there will be n lines in the label file, and each 

ine represents one mass’s positional and size information: relative 

oordinate X and Y of the center point, relative width (W) and rel- 

tive height (H). Their mathematical definitions are as below. 

elati v e coord inate X = 

x 

image wid th 

(1) 

elati v e coord inate Y = 

y 

image wid th 

(2) 

elati v e width W = 

mass width 

image width 

(3) 

elati v e height H = 

mass height 

image height 
(4) 

here x and y are the coordinates of the mass center, respectively. 

ass width and mass heigh are measured from the breast mass. 

fter the ROI labels were well-prepared, we further did image aug- 

entations, including image rotation, scaling, horizontal flipping, 

ertical flipping, cropping, and mixing up, to enlarge the input data 

or each epoch of YoloV5L6 training. After 10 0 0 epochs using the 

BIS-DDSM training data, the loss of YoloV5L6 ROI detection model 

ecame stable and converged to a small value. When applying the 

rained mass detection model to identify the breast mass in an 

nlabeled mammogram, its output is the position and size of the 

ass in the original image with a confidence score. The higher the 
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Fig. 2. The architecture of the proposed YOLO-LOGO model . (a): The overall workflow of this study with detailed LOGO structure of the proposed segmentation model. 

(b): The details of YOLO-based mass detection. 
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onfidence score, the more likely it is a mass. More details of the 

oloV5L6 could be found in its original paper [ 25 , 26 ]. 

.3.2. LOGO: architecture and methods of breast mass segmentation 

The next stage after mass detection is breast mass segmenta- 

ion. We borrowed the gated axial-attention mechanism and LOGO 

raining strategy from MedT [16] to achieve this. As mentioned 

riefly in the introduction, the gated axial-attention mechanism 

as developed to be better accepted when the sample size is not 

arge enough (which is often the case in medical imaging field) 

nd the computing resource is limited. The gated axial-attention 

ould be considered as a variation or extension of self-attention, 

ith gates added to control the information flow and the atten- 

ion itself decomposed into two axials (height and width) to save 

omputational costs. The self-attention mechanism proposed in the 

riginal ViT could be formulated as below: 

 i j = 

H ∑ 

h =1 

W ∑ 

w =1 

sof tmax 
(
x T i j M 

T 
q M k x hw 

)
M v x hw 

(5) 

here o ∈ R 

D out ×H×W is the output of self-attention layer. H , W , 

nd D correspond to height, width, and dimension of input fea- 

ure map x ∈ R 

D in ×H×W . x and o are high-dimensional matrices, 

 ∈ R 

D in ×D out represents learnable projection weight matrix. i, j ∈ 

 and i ∈ [1, H ], j ∈ [1, W ] represent coordinates of the input

eature map x . While q, k and v are query, key, and value [35] .
4 
s can be seen from the Eq. 5 , the self-attention layer could cap- 

ure non-local information from the entire input feature map. Thus, 

t is computationally cost to train. To reduce the computational 

omplexity, axial-attention was proposed to decompose the self- 

ttention into two parts [37] . The first part calculates self-attention 

n height axis of the feature map ( Eq. 6 ), while the second part

erforms on the width axis ( Eq. 7 ). 

 

H 
i j = 

H ∑ 

h =1 

softmax 

(
x T i j M 

T 
q M k x h j + x T i j M 

T 
q r 

q 

h j 
+ M 

T 
k x h j r 

k 
h j 

)
( M v x h j + r v h j ) 

(6) 

 

W 

i j = 

W ∑ 

w =1 

softmax 
(
x T i j M 

T 
q M k x iw 

+ x T i j M 

T 
q r 

q 
iw 

+ M 

T 
k x iw 

r k iw 

)
( M v x iw 

+ r v iw 

) 

(7) 

here r q , r k , and r v are learnable weight matrices for relative posi-

ional encodings for query, key, and value. These relative positional 

ncodings usually need big data to train. However, medical image 

atasets usually do not have big sample size, which will harm the 

odel performance because the learned relative positional encod- 

ngs are not accurate. Therefore, in the medical image data anal- 

sis situation, it is better not to always add the learned relative 

ositional encodings to the final output. Following this idea, gate 
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Table 2 

Hyperparameter tuning. 

Parameter name Parameter value 

Breast mass detection (YoloV5L6) Epoch 1E + 2, 3E + 2, 5E + 2, 1E + 3 ∗

Learning rate 1E-1, 1E-2, 1E-3 

Batch size 4, 8, 12, 16 

Patience 25, 50, 75 

Threshold 0.25, 0.3, 0.4, 0.45 

Optimizer SGD, Adam 

Envolve True 

Breast mass segmentation (YOLO-LOGO) Epoch 1E + 2, 3E + 2, 5E + 2, 1E + 3 

Learning rate 1E-4, 3E-4, 1E-3, 3E-3 

Batch size 1, 2, 4 

Image Size 128 

Augmentation True 

Momentum 0.8, 0.9, 0.99 

Weight Decay 3E-6, 1E-5, 3E-5 

Optimizer Adam, SGD 

∗ Bold ones are used in the final model. 
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echanism can be added to the query, key, and value of both 

eight axial-attention ( Eq. (8) ) and width axial-attention ( Eq. (9) ) 

o control the information flow. 

 

H 
i j = 

H ∑ 

h =1 

sof tmax 
(
x T i j M 

T 
q M k x h j + G q x 

T 
i j M 

T 
q r 

q 

h j 
+ G k M 

T 
k x h j r 

k 
h j 

)

×
(
G v 1 M v x h j + G v 2 r 

v 
h j 

)
(8) 

 

W 

i j = 

W ∑ 

w =1 

sof tmax 
(
x T i j M 

T 
q M k x iw 

+ G q x 
T 
i j M 

T 
q r 

q 
iw 

+ G k x 
T 
iw 

M 

T 
k r 

k 
iw 

)

×
(
G v 1 M v x iw 

+ G v 2 r 
v 
iw 

)
(9) 

G q , G k , G v 1 , G v 2 are learnable gate parameters, which are used

o control the pass of learned relative position codes to the final 

utput. 

The ROI detected by the YoloV5L6 model in the previous step 

s a local view of the breast mass that could provide zoomed-in 

etails of the breast mass, while the whole image could provide 

ong-range non-local context. Both ROI and whole image are im- 

ortant for archiving a good segmentation performance. We used 

he LOGO architecture to take advantage of both ROI and whole 

mage for our final segmentation result. The LOGO architecture has 

wo branches, local branch and global branch ( Fig. 2 B ). After breast

ass detection is completed, we can get masses’ relative coordi- 

ates and size from the output of YoloV5L6. Then we crop the 

quares of the masses from the high-resolution raw images. The 

ropped images preserve as much detailed information as possi- 

le for local context, thereby generating more refined segmenta- 

ion results in this local branch. At the same time, we used the 

re-processed breast mammogram images with reduced resolution 

128 × 128) as the input of the global segmentation branch. This 

s to maintain the position accuracy of the final segmentation re- 

ult. Both the global branch and the local branch are composed of 

he same number of gated axial transformer layers. After concur- 

ent local and global segmentation, we strictly abide by the coordi- 

ate and size information and infuse the generated local segmen- 

ation into the generated global segmentation. This generates the 

nal mass segmentation result for a full mammography image. 

.3.3. Hyperparameter finetuning 

The hyperparameters we tuned for training our breast mass de- 

ection model and breast mass segmentation model are listed in 

able 2 . Please noticed that the bold ones were used in the final

odel as they could provide the lowest loss values and the most 

table training procedure. 
5 
.4. Baselines and performance metrics 

For the breast mass detection, we compared the performance of 

ur proposed YOLO model with several object detection baselines 

uch as Faster Region-based CNN (R-CNN) [ 38–40 ], Single Shot De- 

ector (SSD) [ 41 , 13 ] and other YOLO versions [ 23 , 42–44 ]. These are

epresentative object detection models. Faster R-CNN solves the 

bject detection problem by using a method called selective search 

hich reduces the computational burden caused by sliding win- 

ow in traditional object detection models. It has been shown to 

ave a decent performance in mammogram-based breast mass de- 

ection [45] . SSD runs the convolutions at different scales and each 

cale could output detection bounding box in different sizes. The 

erformance of these models was also discussed and compared 

n previous works [23] . We evaluated the performance using true 

ositive rate (TPR) [46] and mean average precision (mAP) [47] . 

 P R = 

T P 

T P + F N 

(10) 

AP = 

1 

n 

∑ 

n 

∑ R 
r P recision @ r 

R 

(11) 

TP, FP , and FN are the true positives, false positives, and false 

egatives, respectively. AP is defined as the averaged precision 

mong several selected recalls. Precision @ r is the precision when 

ecall is r ; R is the number of selected recalls. n is the number of

lasses in object detection (particularly in breast mass detection, 

 = 1). Recall and precision are defined as: 

ecall = 

T P 

T P + F N 

(12) 

 recision = 

T P 

T P + F P 
(13) 

For breast mass segmentation, we compared the performance 

f our proposed LOGO model with several baseline methods such 

s Gated Axial Net [37] and MedT [16] . As mentioned in the intro- 

uction, MedT proposed a gated axial transformer model structure 

hich consists of convolutional layers and gated axial-attention 

ayers with local and global branches but without YOLO detection 

16] . Gated Axial Net consists of only gated axial-attention lay- 

rs [37] . To evaluate the effect of the local-global design on the 

odel’s performance, we applied the Gated Axial Net in both lo- 

al way and global way: Gated Axial Net (Global) is based on the 

hole image only. The Gated Axial Net (Local) is based on the 

OLO detected ROIs only. We evaluated and compared their per- 

ormance using F1-score and IoU (also known as Jaccard index), 
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Fig. 3. Automatically extracting the ground truth label for mass detection . (a): An example of original image. (b): The preprocessed image of (a) using adaptive denoising 

algorithm. (c): a bounding rectangle(s) of mass region(s) is created on the pre-processed binary mask image of (b). (d): The same-sized rectangle(s) is positioned on the 

same position of (b), this forms the ground truth label for training YoloV5L6. 
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Table 3 

The test performance of variants of YoloV3 and YoloV5 . YoloV5L6, 

which could be trained with high resolution (1280 ×1280) data, achieved 

the best mAP performance on both datasets. It should be noted that the 

models were trained on CBIS-DDSM’s training set only. The reported per- 

formance is measured on CBIS-DDSM’s test set. For INBreast data, we only 

consider it as another test set. No training was conducted on INBrest data. 

Models mAP on test set Parameters Image size 

CBIS-DDSM INBreast 

YoloV3-tiny: 53 45.1 8.9M 640 

YoloV3 60 56.5 61.9M 640 

YoloV3-spp 63 58.3 63.0M 640 

YoloV5s 59 47.2 7.3M 640 

YoloV5L 60 53.0 47.0M 640 

YoloV5s6 58 53.2 12.7M 1280 

YoloV5m6 60 57.7 35.9M 1280 

YoloV5L6 65 61.4 77.2M 1280 
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hich are defined as below. 

 1 = 

2 P recision ∗ Recall 

P recision + Recall 
(14) 

oU = 

T P 

T P + F P + F N 

(15) 

.5. Sensitivity analysis of the proposed YOLO-LOGO model 

We investigated the potential effects of image resolutions and 

ugmentations on the performance of the proposed YOLO-LOGO 

odel on the CBIS-DDSM test set and INBreast dataset. For the 

ata augmentation, we increased the data size to the original two 

imes using a parametric model developed by ThambawitaVajira et 

l. [48] . For the resolutions, we considered the resolution sizes of 

 4 ×6 4, 128 ×128 and 256 ×256 with and without data augmenta-

ion. 

. Results 

.1. Data pre-processing 

As we have shown in Fig. 3 (a) , the original mammography im- 

ges often contain some irrelevant information which has been re- 

oved in Fig. 3 (b) . It is also noted that the file format is changed

rom DICOM to JPEG, which reduced the file size by 90% while pre- 

erving the details of the image. After pre-processing, we got en- 

anced JPEG images of uniform size 4096 × 4096. It is also noted 

hat we’ve adapted the same automatic adaptive procedures for the 

wo datasets (CBIS-DDSM and INBreast) used in our study. 

.2. YOLO-based breast mass detection 

We trained and tested several variants of YoloV3 and YoloV5, 

nd their breast mass detection performances on the two datasets 

re listed in Table 3 . In YoloV5 ′ s 6th updates, YoloV5s6, YoloV5m6, 

nd YoloV5L6 are able to process input images with a higher res- 

lution of 1280 × 1280. Although containing the most trainable 

arameters (77 M), YoloV5L6 achieved the best mAP performance 

n both of the datasets. Thus, it was selected as the breast mass 

etection model in our study. 
6 
Five examples of the YoloV5L6’s output with the detected 

ounding boxes and confidence scores are shown in the first row 

f Fig. 4 . Their ground truth labels are showed in the correspond- 

ng columns of the second row of Fig. 4 . Fig. 4 (a) –(c) are 3 suc-

essful cases with confidence scores equal to 0.9. Comparing with 

heir ground truth in Fig. 4 (f) –(h) , the bounding boxes are posi-

ioned on the correct place and the size of the bounding boxes are 

oughly consistent with the ground truth labels. Fig. 4 (d) shows 

 detected ROI bounding box with a confidence score only equals 

o 0.4. Although the detected bounding box appears to be correct 

ompared to its ground truth ( Fig. 4 (i) ), the model has no confi-

ence in the prediction. This might be due to the high density of 

reast tissue and the small area of the breast itself in this exam- 

le. Fig. 4 (e) shows a failure case where the model failed to output 

 bounding box because the confidence score is below the speci- 

ed threshold of 0.4. This may be because the breast mass is too 

mall and hidden in normal breast tissues. Images like this with- 

ut object detection output are directly used as input to the global 

ranch in the following segmentation stage. Correspondingly, the 

esult of such segmentation does not require infusion (as there will 

e no local branch in this case). 

SSD and Faster R-CNN were acted as baselines of the breast 

ass detection model in this study. Fig. 5 (a) visualized their breast 
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Fig. 4. The success and failure cases of breast mass detection using YoloV5L6 model. (a, b, c) are 3 success cases with confidence scores equal to 0.9. Their ground truth 

labels are shown in (f, g, h), respectively. (d) is a relative failure case with confidence score equal to 0.4. Its ground truth is shown in (i). (e) is a failure case, where the 

model fails to output a ROI bounding box. Its ground truth is (j). 

Fig. 5. The performance comparisons of the baseline breast mass detection models and the proposed YoloV5L6. (a) visualized the breast mass detection results of the 

models on an example image. (b) is the performance metrices of the baseline models compared with the best variant of YoloV3 (YoloV3-spp) and YoloV5 (YoloV5L6). It 

should be noted that the proposed model and the baseline models were trained and tested on the same training set and validation set from CBIS-DDSM data only. The 

reported performance is measured on CBIS-DDSM’s test set. For INBreast data, we only consider it as another test set. No training was conducted on INBrest data. 
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ass detection result on an example image. Although there were 

ome discrepancies between the detected ROI and ground truth 

OI. Regarding the size of the bounding box, YoloV5L6 achieved the 

ighest confidence score and the accurate ROI position. The perfor- 

ance metrices of the baseline models were compared with the 

est variant of YoloV3 and YoloV5 in Fig. 5 (b) . The training was

one on Nvidia GeForce GTX 1080Ti GPU. During the training, the 

poch was set to be 10 0 0 and batch size was set to be 4. YoloV3-

pp and YoloV5L6 held significantly higher scores and more stable 

erformances on both of the datasets than the SSD and Faster R- 

NN models while YoloV5L6 was slightly better than YoloV3-spp. 

.3. YOLO-LOGO based breast mass segmentation 

Gated Axial Net and MedT were used as baselines of the breast 

egmentation model YOLO-LOGO in this study. Two example seg- 

entations were visualized in Fig. 6 (a). The proposed YOLO-LOGO 

est preserved the shape and position information of the breast 

asses compared with the Gated Axial Net and MedT. In the 

rst case (the first row), Gated Axial Net incorrectly predicted the 

reast mass position (lower than the ground truth, and an extra 

iece at the left upper corner was predicted as mass although it 
7 
as not). In the second case (the second row), although Gated Ax- 

al Net and MedT correctly predicted the location of the mass, their 

egmentations are not as good as YOLO-LOGO because they tend to 

nderestimate the area of the mass. The F1 and IoU metrices are 

hown in Fig. 6 (b). YOLO-LOGO outperformed the previous works 

n both datasets and the local resolution is also preserved. 

. Discussion 

In this study, we used an automatic adaptive denoising image 

re-processing framework for mammography data. We proposed 

he state-of-the-art object detection model, YoloV5L6, for the 

reast mass detection. Overall, the proposed YOLO-LOGO model 

utperformed other baselines in segmenting the breast masses us- 

ng the mammography. 

We investigated the potential effects of image resolutions and 

ugmentations on the performance of the proposed YOLO-LOGO 

odel on the CBIS-DDSM test set and INBreast dataset. As shown 

n Table 4 , when the image resolution is 128 ×128 without aug- 

entation, the model achieved the best F1 score (74.52), the third 

est IoU score (64.04) on CBIS-DDSM test set, and the second best 

1 score (69.37), the second best IoU score (61.09) on INBreast 
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Fig. 6. The performance comparisons of the baseline breast mass segmentation models and the proposed YOLO-LOGO. (a) The segmentation results on two test ex- 

amples. In the first row, the result of Gated Axial Net incorrectly predicted the mass position. In the second row, although Gated Axial Net and MedT correctly predicted 

the location of the mass, they tend to underestimate the area of the mass. As comparison, YOLO-LOGO best predicted the size, position, and shape of the mass. (b) The 

comparisons of the segmentation performance metrices on two datasets. Gated Axial Net (Global) is based on the whole image only. The Gated Axial Net (Local) is based on 

the YOLO detected ROIs only. The MedT is based on global and local without YOLO detection. YOLO-LOGO outperformed the previous works on both datasets and the local 

resolution is also preserved. 

Table 4 

The sensitivity analyses of the proposed YOLO-LOGO model. 

Image resolution CBIS-DDSM INBreast 

F1 IOU F1 IOU 

64 ×64 72.32 65.90 68.23 61.25 

64 ×64 (with augmentation) 69.85 64.10 62.69 59.09 

128 ×128 74.52 64.04 69.37 61.09 

128 ×128(with augmentation) 71.96 63.92 65.98 60.40 

256 ×256 73.94 62.87 69.41 60.52 

256 ×256(with augmentation) 72.21 63.08 64.74 57.78 
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ataset. Overall, the best performance has been achieved using the 

ata set with resolution 128 ∗ 128 without augmentation. Although 

t is expected that augmentation will likely increase the perfor- 

ance of the model under the assumption that the training data 

nd the testing data are both drawn from the same distribution, 

ur study sample size is relatively small, which may not represent 

he distribution of the training set. Therefore, the augmentation 

echnique applied here does not show expected performance. Thus, 

o balance the computational cost and the model performance, we 

ecided to us the image resolution of the proposed YOLO-LOGO 

odel as 128 ×128 without augmentations. 

Unlike the two-stage model proposed by Yan et al., which could 

nly output one breast mass per image, we set a threshold for our 

OLO-LOGO segmentation model. Those detected ROIs with confi- 

ence scores higher than this threshold would be recognized as a 

ass in output. Thus, it is not limited to only one mass per image.

onsequently, the detected ROI could be 0 for some images. In this 

ase, the whole image will be input into the global branch of our 

OLO-LOGO model while the local branch left empty, which means 

he final segmentation result will only depend on the whole image 
8

rocessed by the global branch. This makes our model more flex- 

ble and suitable for mammography data as the breast masses are 

asy to be missed by the detection model due to the small mass 

ize and high tissue density. 

One limitation of our work is that the proposed model is 

ot trained end-to-end. The YoloV5L6 based breast mass detec- 

ion model and the gated axial transformer plus LOGO training 

trategy-based segmentation model are trained separately. Thus, in 

he future, we could consider combining their loss functions into 

ne and making the system end-to-end. Also, it should be noted 

hat although our proposed model and the baseline models used 

n this study were trained, validated, tested on the same training 

et, validation set, and test set, it needs to be caution when com- 

aring our model’s performance with other published works that 

sed the same CBIS-DDSM data but were not included in our base- 

ines. Because we did not use the CBIS-DDSM provided test set. In- 

tead, we divided the original test set into test and validation sets. 

he validation set is critical for the hyperparameters’ finetuning 

n our model. Since the INbreast data are full-field digital mam- 

ography while the CBIS-DDSM are scanned films, they may have 

een acquired using different imaging modalities. Our models were 

rained on CBIS-DDSM data only, and the INBreast (as an indepen- 

ent dataset) acted as an additional test set to evaluate the gener- 

lity of our model. We observed that our model’s performance on 

he CBIS-DDSM test set is better than that on the INBreast, which 

aybe partially due to the acquisition modality difference. 

. Conclusions 

We developed a two-stage model to first detect breast mass, 

nd then solve the breast mass segmentation problem. The data 

as carefully pre-processed, and the irrelevant noise information 

as removed from the images, bringing additional accuracy for 
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ater analysis. Our model showed the improved performance than 

tate-of-the-art models in both breast mass detection and seg- 

entation. Additionally, this model does not require high powerful 

omputing resources. It could run on ordinary accessible devices. 

hus, it is of practical significance to promote the model to the 

recise CAD for mammography. 
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